Enquire Now



v|tome|x L 300

v|tome|x L 300

The phoenix v|tome|x L 300 is a versatile high-resolution microfocus system for 2D and 3D computed tomography (micro ct) and 2D non-destructive X-ray inspection. It is equipped with the first unipolar 300 kV / 500 W microfocus source ensuring best in the world magnification at 300 kV. With its granite-based manipulation it is handling even large samples up to 50 kg and up to 600 length / 500 mm in diameter with extremely high precision. The system is a great solution for void and flaw detection and 3D metrology (e.g. first article inspection) of composites, castings and precision parts, e.g. injection nozzles or turbine blades. An optionally high power nanofocus X-ray tube allows to adapt the phoenix v|tome|x L 300 to any kind of industrial and scientific high-resolution CT application.

Key Features:


Customer Benefits:



3D Computed Tomography


The classic application of industrial X-ray 3D computed tomography (micro ct and nano ct) is the inspection and three-dimensional measurement of metal and plastic castings. However, phoenix|x-ray’s high-resolution X-ray technology opens up a variety of new applications in fields such as sensor technology, electronics, materials science, and many other natural sciences.

Turbine blades are complex high-performance castings which have to fulfill highest quality and security-requirements. CT allows failure analysis as well as precise 3D measurements (e.g. wall-thickness).

Material Science


High-resolution computed tomography (micro ct and nano ct) is used for inspecting materials, composites, sintered materials and ceramics but also to analyze geological or biological samples. Materials distribution, voids and cracks are visualized three-dimensionally at microscopic resolution.

nanoCT® of a glass fiber-composite material: The fiber direction of the fiber mats (blue) and the matrix resin (orange) are displayed. Right: Voids inside the resin appear as dark cavities. Left: The resin has been faded out to better visualize the fiber mats. The individual fibers inside the mat are visible.

Sensorics and Electrical Engineering


In the inspection of sensors and electronic components, high-resolution X-ray technologies are mostly used to inspect and evaluate contacts, joints, cases, insulators and the situation of assembly. It is even possible to inspect semiconductor components and electronic devices (solder joints) without having to disassemble the device.

Microfocus computed tomographic (micro ct) image of a lamda probe (connector-side view) showing the Inconell-protective case (yellow), including laser welded seams, crimp connections (blue) and contacts of the ceramic oxygen sensor (blue/red).



3D metrology with X-ray is the only technique allowing to non-destructively measure the interior of complex objects. By contrast with conventional tactile coordinate measurement technique, a computed tomography scan of an object acquires all surface points simultaneously – including all hidden features like undercuts which are not accessible non-destructively using other methods of measurement. The v|tome|x s has a special 3D metrology package that contains everything needed for dimensional measuring with the greatest possible precision, reproducibility and user-friendliness, from calibration instruments to surface extraction modules. In addition to 2D wall thickness measurements, the CT volume data can be quickly and easily compared with CAD data, for example, in order to analyse the complete component to ensure it complies with all specified dimensions.

3D measurement of a cylinder head

Casting & Welding


Radiographic non-destructive testing is used to detect flaws in castings and welds. The combination of microfocus X-ray technology and industrial X-ray computed tomography (mico ct) enables defect detectability in the micrometer range and provides three-dimensional images of low-contrast defects.

Three-dimensional microfocus CT (micro ct) of an aluminum casting containing some voids.


Max. tube voltage 300 kV
Max. output 500 W
Detail detectability Up to 1 µm
Min. focus-object-distance 4.5 mm (for CT realistic 5 mm)
Max. voxel resolution (depending on object size) < 2 µm (300 kV tube), up to 1 µm (180 kV tube)
Geometric magnification (2D) 1.25 times up to 333 times
Geometric magnification (3D) 1.25 times up to 200 times
Max. object size (height x diameter) 600 mm x 500 mm / 23,6" x 19,7"
Max. object weight 50 kg/ 110.23 lb
Manipulation granite-based 7-axis manipulator for long-term stability and highest precision
2D X-ray imaging Yes
3D computed tomography Yes
Advanced surface extraction yes (optional)
CAD comparison + dimensional measurement yes (optional)
System size 4100 mm x 2600 mm x 2960 mm / 161.4” x 102” x 116.5”
System weight appr. 22 t / 48501 lb
Radiation Safety - Full protective radiation safety cabinet according to the German RöV (attachment 2 nr. 3) and the US Performance Standard 21 CFR 1020.40 (Cabinet X-ray Systems)
- Radiation leakage rate: < 1.0 µSv/h measured 10 cm from cabinet wall